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In papers [1] and [2] it was shown that a star-shaped cross-section of the
body of a flying vehicle permits a ten-fold reduction in wave drag compared
with the body of revolution of equlvalent maximum cross-section area or
volume, Since the deductions are
based on the use of Newton's formula
for the pressure distribution, 1t

is necessary to discuss whether such
drag reductlon may be fictitious
because of rise of the error in that
formula. An answer could be found
by comparing with exact solutlions,
However, for three-dimensional bo-
dles only one exact solution 1s
known (3], application of which is
limited, as investigation has shown,
to pyramidal bodies far in shape
from the optimum. In view of this
situatlon, it irs of interest to
construct an exact solution for
three~dimensional star-shaped bodies,
similar to those studied in [1].

Fig, 1

We conslider a system of plane
intersecting shock waves passing through the origln of coordinates and deter-
mined by the angles o and vy (Fig.u§. We denote the free-stream veloclty
and Mach number by U and M, respectively. We introduce the auxiliary
angle vy, according to Formula tany, = tanysinag, and then the veloclty
components behind the first shock wave, referred to the free-stream velocity,
are glven by the relations

v, =1—(1—¢)(sin?n— MJ), v, = (1— &) cotT1 (sin® 11 — M) sina
v, = —(1—¢)cotm(sin?yy — MY cosa, &= (x—1) (x+1)7!

( » 1s the adiabatic exponent) 1)

Let the full velocity vector, referred to the velocity U and the Mach
number behind the first sheck wave be U, and ¥, , respectively, The de-
flection of the flow after passing through the filrst shock wave (the ahgle
8 ) can be calculated from the relation
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(1 — ¢ (sin®y, — M2
— (1 — &) (sin®¥y; — M_2?)

After thils u, 1s found from the well-known relations for an cblique shock
wave. The disturbed gas flow behind a chosen system of shock waves will
correspond to flow past a certaln body if there exists a regular shock-wave

intersection at polnt 4 , which permits the flow to be turned parallel to
the plane of symmetry. The necessary condition for regular intersection is

M, = M;sino >1 (2)

The angle o between the veloclity vector U, and the line of intersectlon
04 of the shock waves is found from the relation

an§ = cot Ty

cos ® cos 7, = ¢os (1, — 0) cos 7 (3)

We now introduce into consideration the angle of inclination 6 of the
flow lying in the plane normal to the ridge 04 and formed by the projec-
tions onto the plane of the segment (0,4 and the velocity vector U, . For
its value we obtaln, after some easy calculations, Formvla

€0S 6 = (tany — tnd sina) fan2y (1 + cosPqtan? 8) +wn?d — 2 sinq tany andi~"* (3)

The position of the second wave (047 1in Fig.l) can now be determined by
the angle g , lying 1n the plane of the angle ¢ , from the condition that
the turning of the sream in this plane is given by Expression (3). As a
result the angle g 1s found from the oblique shock wave equations 1in the

form M 3sin3B — 1
tan § = 2 cot 3 R 1n (4)
M (% 4 cos28) + 2

If the initlal parameters of the problem ¥, , y and ¢ are such that
Expression (4) nhas a solution for B , then the constructed gas flow corres-
ponds to flow past a certaln three-dimensional conical body with a cross
section consisting of stralght line segments. We determine 1ts geometry
(points £, D and ¢ in Fig.1). After elementary calculations we find that
points £ and (¢ have the coordinates

yg = (sina — A cosa) tg d, A [sinycosasind — cot (B — 0) cos 8] = cos ©
Y, = 2z, cot (1 / n), z.sin (@ — n/ n) = oy, sin (n / n) 6))
To determine the remaining points it 1s necessary to know the coordintes

of the point F 1lying on the continuation of the wall ¢p . A calculation
leads to Expression "
)

Y = taaT,; mnd cos (@ — xx / n)
M=30 F " sin (w/ n)tany, + sin (@ — nt / n) cosa wnd
i
a° h Hence we see that the coordinates of
‘\\\ point p can be found from Equations
Yp oot (B — 0) + sint oot (@ — 1)
@€ / yD= - _
=5 cot (3 — 8) + cosy cot (@ — )
_ sin Yy — cos 1 yp
&~ - DT G E o FesTe @y )
= (1— %) eola =)
4 unw—(i—ml una__;.

0 20 40 40 ﬂﬂ,”
As 1s evident from Fig.l, the projection
Fig. 2 of the reglon of disturbed flow behind the
first and second shock waves onto the plane
x = ) 1s Adetermined by the areas S, and §,. Their values can be calcula-
ted by means of (5) to (7) from the relations
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2S1 = ¥Yr (zc -—-2D), 253 = Ygzp

We proceed to the calculation of the forces, On the wall (@ there acts
a force produced by the constant pressure

e, V=201 —¢) (sinty, — M)
The wall E£D 1lles in a reglon of increased pressure whose value is
sin? o (sin? B — M%) (1 — &) M Psin® 1,
14 s (M ?sin?y, — 1)

The flow in regions ACD and 4pr (Fig.l) is uniform. All streamiines
in the plane x = 1 passing through the shock wave 4 converge at the
single point F , which 1s a Ferrl point for this flow. Then, upon traver-
sing the second wave 4D all streamlines, including the wall, have a corner.
The wave drag of the body under consideration is represented by

cp(l) S+ cpm S

P =V + 202

Ce= N
A solutlon of the inverse problem exists only for a deflnite range of
values of the parameters M,, a, v and n . For example, the inequality

a > n/n must always be satisfied, Obviously there are also other limita-
tions. One such limitation is the necessary condition (2). Using it gives
for each value of the free-stream Mach number a definite range of permissi-
ble values of the parameters g and y . Flg.2 shows the results of the
calculation for the range of Mach numbers M,=5, 10, and « with the adila-
tatic exponent x = 1.4 . The corresponding regions are cross-hatched in
the figure. It mus be kept in mind that condition (2) is not sufficlent, so
that a choice of parameters inside the indicated regions has the character
of & preliminary cholce. Calculations of the dependence of wave drag upon
the angle ¢ for some values of the
parameters ¥_, n and ‘y (with

x = 1.4) are Bhown in Fig, 3 and 4,
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The quantity ¢°/C, indicated on the vertical axis represents the ratio
of the drag of & elrcular cone of equivalent length and maximum cross-section
area to the drag of the star-shaped body. Calculations for Ne== and
y = 10° and 20° are shown in Fig.3. As 1s evident from the graph, the dif-
ferences in drag decrease as the angle o increases. However, even for
large values of o the drag of the star-shaped body still remalns, say, ten
times lower than that of the equivalent cone, As o decreases (a - n/n),
the drag of the star-shaped body drops, and the difference from the cone
increases, Comparison of the curves in Fig.3 shows that as the number n
of edges increases, with the other parameters unchanged, the drag is reduced,
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whereas 1t increases as the parameter y I1ncreases, Qualitatively similar
behavior 1s found &lso ror'rinitq values of M, .

We point out one pecullarity of the curves given in Pig.4k. According to
the graph we find that as the y_ increases with the other parameters un-
changed, the drag coefficient of the body increases., In fact, different
bodles are obtained for different Mach numbers, and the change in geometry
of the body affects the drag more strongly than variation of Mach number,
PFig.4 also shows the shape of the cross section for one case with the values
of the parameters n =6, y =5°, a = 41°, and ¥ .= = . Together with the
exact calculation of wave drag, the calculation was also carried out accord-
ing to Newton's formula for a number of cases, Comparison shows that the
error has the order of magnitude of 20 per cent. Thus all results on signi-
fiocant changes of wave drag obtained for star-shaped bodles in previous works
[1 and 2] agree quantitatively as well as qualitatively with the exact solu-
tions.

We observe in conclusion that the possibllity of simillar solutions was
conjectured independently by Maikapar [4].
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