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In papers [1] and [2] It was shown that a star-shaped cross-section of the 
body of a flying vehicle permits a ten-fold reduction In wave drag compared 
with the body of revolution of equivalent maximum cross-section area or 

volume. Since the deductions are 
based on the use of Newton's formula 
for the pressure distribution, It 
Is necessary to discuss whether such 
drag reduction may be fictitious 
because of rise of the error In that 
formula. An answer could be found 
by comparing with exact solutions. 
However, for three-dimensional bo- 
dies only one exact solution Is 
known C 31, application of which Is 
limited, as investigation has shown, 
to pyramidal bodies far In shape 
from the optimum. In view of this 
situation, It IP of Interest to 
construct an exact solution for 
three-dimensional star-shaped bodies, 
similar to those studied In [l]. 

Pig. 1 
We consider a system of plane 

intersecting shock waves passing thro h the origin of coJrdlnates and deter- 
mined by the angles a and 
and Mach number by U and ,!JI, 

(Plg.3. We denote the free-stream velocity 
respectively. We introduce the auxlllary 

angle .,, according to Formula tany, = tanyslna , and then the VelOCltY 
components behind the first shock wave, referred to the free-stream velocity, 
are given by the relations 

% = 1 - (1 - E) (sin2rl - Mz), vy = (I- c) 0x71 (sin? yl - Mz) sina 

VI = -((1 -e) cot yl (sin2yl - M-3 cosa, e = (X - 1.) (x i-l)-' 

(R Is the adiabatic exponent) (1) 

Let the full velocity vector, referred to the velocity U and tg,M;zh 
number behind the first shock wave be 11, and M, 
flectlon of the flow after passing through the flr;t 

respectively. 
shock wave (the ahgle 

b ) can be calculated from the relation 
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(I - e) (sid +fI - Mm-z) 

ma * = c0f Tl I - (1 - e) (sin27, - Mm-Z) . 
After this x, Is found from the well-known relations for an cbllque shock 

wave. The disturbed gas flow behind a chosen system of shock waves will 
correspond to flow past a certain body If there exists a regular shock-wave 
intersection at point A , which permits the flow to be turned parallel to 
the plane of symmetry. The necessary condition for regular Intersection Is 

M, = Ml sine > 1 (2) 

The angle UI between the velocity vector- (I, and the line of Intersection 
OA of the shock waves Is found from the relation 

cos cl COST, = cos (71 - b)cos r (3) 

We now Introduce Into consideration the angle of Inclination 0 of the 
flow lying In the plane normal to the ridge OA and formed by the projec- 
tions onto the plane of the segment OIA and the velocity vector U, . For 
Its value we obtain, after some easy calculations, Form<lla 

CO.sO= (uny-~n8sina)(un~~(1+~os~acu,~6)+tpn~6- 2 sinau~yunb~-~~ (3) 

The position of the second wave (OAC In Flg.1) can now be determined by 
the angle B lying In the plane of the angle e from the condition that 
the turning OI! the sream In this plane Is given by'Expresslon (3). As a 
result the angle g Is found from the oblique shock wave equations In the 
form 

me=2 “‘3 
MIzsinap - 1 

MI: (x + cos 2P) + 2 
(4) 

If the Initial parameters of the problem M, and o are such that 
Expression (4) has a solution for B , then the conztructed gas flow corres- 
ponds to flow past a certain three-dimensional conical body with a cross 
section consisting of straight line segments. 
(points E, D and C In Flg.1). 

We determine Its geometry 
After elementary calculations we 'find that 

points E and C have the coordinates 

yE = (sin a - 3. cos a) tg 6, h [sin r cos a sin 8 - WI (fJ - 0) cos S] = cos 0 

yc= ze fat b/n), zC sin (a - n / n) = my, sin (n / n) (3 

To determine the remaining points It Is necessary to know the coordlntes 
of the point F lying on the continuation of the wall CD . A calculation 
leads to Expression 

(61 
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Yp = 

UT, tm8 cos (a - .z / n) 
sin(n/n)Gn~I+sin(a-~/n)cosamd 

Hence we see that the coordinates of 
point D can be found from Equations 

YD= 
yp COI (P - 0) + sin r a (0 - $4 

CQ( (p - 0) + cost u)t (a - $) 

sin 7 - cos r yF 
ZD = 

wt (p - 0) + cos r 001 (a - $I) (7) 

As IS evident from Flg.1, the projection 
Fig. 2 of the region of disturbed flow behind the 

first and second shock waves onto the plane 
x = ?. Is determined by the areas S, and S,. Their values can be calcula- 
ted by means of (5) to (7) from the relations 
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We proceed to the calculation of the forces, 
a foice produced hy the constant pressure 

On the wall QI there acts 

cPQ) = 2 (1 - s) (sin2 yr - A&-‘) 

The wall ED lies in a region of increased pressure whose value is 

(2) = (0 + 2l.7,= 
sin2 0 (sina p - 

% 

M,;la) (1 - e) MWa sina rr 
cP 

1 + E (Mm3sina rl - 1) 

The flog in regions Am and &DE (Fig.1) is uniform, All streamlines 
in the plane .X = 1 passing through the shock wave AC converge at the 
single point E , which is a Ferrl point for this flow. Then, upon traver- 
sLng the second wave AD all streamlines, _incl~,dl_ng the wall, have a corner. 
The wave drag of the body under consideratlon’is represented by 

c, = % (1) s, + ep s, 
s1+ $2 

A solution of the Inverse problem exists only for a definite range of 
values of the parameters jf,, c, y 
a > n/n must always be satisfied. 

and n . For example, the inequality 
Obviously there are also other limlta- 

tions, One such limitation is the necessary condition (2). UsLng it gives 
for each value of the free-stream Mach number a definite range of permissi- 
ble values of the parameters o and y . Fig.2 shows the results of the 
calculation for the range of Mach numbers M-0 5, 10, and m with the adla- 
batlc exponent x = 1.4 The corresponding regions are cross-hatched In 
the figure. It mus be k&t In mind that condition (2) is not sufficient. so 
that a choice of paramete>s Inside the indicated re&bns has the character 
of a preliminary choice. Calculations of the dependence of wave drag upon 
the angle a for some values of the 
parameters Mm, n and 'y ( with 
s = 1.4) are Ehown in Fig. 3 and 4. 

Fig. 3 Pig. 4 

The quantity Co/C. indicated on the vertical axis represents the ratio 
of the drag of a circular cone of equivalent length and maxMum cross-aectfon 
area to the drag; of the star-shaped body. Calaulations for & - = and 
v - IO* and 20 are shown In Flg.3. As ls evident from the graph, the dif- 
ferences in drag decrease as the angle Q Increases. However, even for 
large values of A the drag of the star-shaped body still rem8lns, say, ten 
times lower than that of the equivalent cone, As a decreases (a * n/n), 
the drag of the star-shaped body drops, and the difference from the cone 
Increases. Comparison of the curves In Flg.3 shows that as the number n 
of edges increases, with the other parameters unchanged, the dreg is reduced, 
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whereas It increases as the parameter y Increases. Qualitatively similar 
behavior is found also for'flnlte values of &, . 

We point out one peculiarity df the curves given in Flg.4. According to 
the graph we find that as the jf, increases with the other parameters un- 
changed, the drag coefflclent of the body Increases. In fact, different 
bodies are obtained for different Mach numbers, and the change in geometry 
of the body affects the drag more strongly than variation of Mach number. 
Pig.4 also shows the shape of the cross section for one case with the values 
of the parameters n = 6, y = 5", Q = 41", and jf _= - . Together with the 
exact calculation of wave drag, the calculation was also carried out accord- 
lng to Newton's formula for a number of cases. Comparison shows that the 
error has the order of magnitude of 20 per cent. Thus all results on slgnl- 
ficant changes of wave drag obtained for star-shaped bodies In previous works 
[l and 23 agree quantitatively as well 88 qualitatively with the exact solu- 
tlone. 

We observe in conclusion that the poaslbllity of similar solutions was 
conjectured Independently by Malkapar [4]. 
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